Structure Reports

Online
ISSN 1600-5368

Dao-Peng Zhang, Jian-Min Dou,* Da-Cheng Li and Da-Qi Wang

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059,
People's Republic of China

Correspondence e-mail: jmdou@Ictu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.049$
$w R$ factor $=0.145$
Data-to-parameter ratio $=19.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

1,2-Bis(diphenylphosphino)-1,2-dicarba-closododecaborane

The title compound, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~B}_{10} \mathrm{P}_{2}$, was synthesized by the reaction of 1,2-dilithiocarborane with diphenylchorophosphine in diethyl ether. The molecular symmetry of the molecule deviates from $C_{2 v}$ because of the different mutual orientations of the phenyl groups. The two P atoms of the PPh_{2} groups and two cage C atoms are almost coplanar, with a $\mathrm{P}-\mathrm{C}-\mathrm{C}-\mathrm{P}$ torsion angle of 10.6 (3) ${ }^{\circ}$.

Comment

Carboranes, despite their high cost, are uniquely suitable for several applications (Pleasek, 1992). Owing to their interesting chemical and physical properties, organic or organo-element derivatives of dicarba-closo-dodecaboranes have received much attention during the past few decades. These types of compounds can be used as catalysts (Hart \& Owen, 1985; Longato \& Bresadola, 1982), as precursors for ceramic materials (Hsu et al., 1991) and in medical areas (Hawthorne, 1993; Gielen et al., 1995). 1,2-Dicarba-closo-dodecaborane is an icosahedral cluster with two C atoms in adjacent positions. The first diphosphine derivative was reported by Alexander \& Schroeder (1963). Since then, these types of compounds have been widely used as ligands in the area of transition metal chemistry (Al-Baker et al., 1987; Crespo et al.,1992; Bembenek et al., 1994).

(I)

The molecular structure of the title compound is shown in Fig. 1. The molecule is composed of an icosahedral carborane skeleton with $-\mathrm{PPh}_{2}$ groups bonded to the two adjacent cage C (Cc) atoms. The relative orientations of the phenyl groups are quite different, and, as a result, the molecular symmetry of the molecule deviates from $C_{2 v}$. The two phosphorus and two cage C atoms are almost coplanar, the $\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$ torsion angle being $10.6(3)^{\circ}$. The two $\mathrm{P}-\mathrm{Cc}-\mathrm{Cc}$ angles in the title compound are 116.6 (2) and 111.07 (19) ${ }^{\circ}$ for $\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$, respectively. The corresponding angles in 1,2-

Received 12 December 2005 Accepted 20 December 2005 Online 7 January 2006
$(\mathrm{PClPh})_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (Balema et al., 1998) are 112.89 (13) and $112.19(13)^{\circ}$, and in $1,2-\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{10}$ (Kivekäs et al., 1995) they are 112.9 (2) and 112.3 (1) ${ }^{\circ}$. The $\mathrm{Cc}-\mathrm{P}, \mathrm{Cc}-\mathrm{B}$, $\mathrm{B}-\mathrm{B}$ and $\mathrm{Cc}-\mathrm{Cc}$ distances in the title compound (Table 1) are in agreement with these two literature structures.

Experimental

The title compound was prepared according to the literature method (Alexander \& Schroeder, 1963). The product was recrystallized from petroleum ether (b.p. 333-383 K) and dried in a vacuum (65%) (m.p. $490-493 \mathrm{~K}$). The white solid was dissolved in dichloromethane, and crystals suitable for X-ray diffraction were obtained after partial evaporation of the solvent.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~B}_{10} \mathrm{P}_{2}$
$M_{r}=512.54$
Monoclinic, $P 2_{\mathrm{b}} / n$
$a=16.315$ (6) A
$b=10.387$ (4) \AA
$c=17.768$ (6) \AA
$\beta=111.845$ (5) ${ }^{\circ}$
$V=2795.0(17) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.930, T_{\text {max }}=0.934$
17791 measured reflections
$D_{x}=1.218 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4735 reflections
$\theta=2.3-26.3^{\circ}$
$\mu=0.17 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, white
$0.43 \times 0.41 \times 0.40 \mathrm{~mm}$

6721 independent reflections
4367 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=28.4^{\circ}$
$h=-21 \rightarrow 21$
$k=-12 \rightarrow 13$
$l=-11 \rightarrow 23$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.145$
$S=1.02$
6721 reflections
343 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.065 P)^{2}\right. \\
& +1.0346 \mathrm{P} \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.58 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}_{\mathrm{m}} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

P1-C1	$1.889(3)$	B3-C1	$1.717(5)$
P2-C2	$1.880(3)$	B3-B9	$1.778(5)$
B6-C2	$1.708(5)$	B3-B4	$1.792(6)$
B6-C1	$1.732(5)$	B4-C1	$1.711(5)$
B6-B11	$1.763(5)$	B4-B9	$1.774(6)$
B6-B7	$1.779(5)$	B4-B10	$1.775(6)$
B6-B5	$1.783(5)$	B4-B5	$1.778(6)$
B7-C2	$1.714(5)$	B5-C1	$1.714(5)$
B7-B11	$1.764(6)$	B5-B10	$1.778(6)$
B7-B12	$1.767(6)$	B5-B11	$1.782(6)$
B7-B8	$1.772(6)$	B11-B12	$1.789(6)$
B8-C2	$1.716(5)$	B11-B10	$1.799(6)$
B8-B12	$1.768(6)$	B12-B10	$1.767(6)$
B8-B9	$1.775(6)$	B12-B9	$1.776(6)$
B8-B3	$1.779(5)$	B9-B10	$1.779(6)$
B3-C2	$1.714(5)$	C2-C1	$1.697(4)$
C1-C2-P2	$111.07(19)$	C2-C1-P1	$116.6(2)$

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

All H were placed in calculated postions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{B}-\mathrm{H}=1.10 \AA$. They were included in the refinement with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{B})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of the People's Republic of China (project No. 20371025).

References

Al-Baker, S., Hill, W. E. \& McAuliffe, C. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1387-1390.
Alexander, R. P. \& Schroeder, H. (1963). Inorg. Chem. 2, 1107-1110.
Balema, V. P., Blaurock, S. \& Hey-Hawkins, E. (1998). Polyhedron, 18, 545552.

Bembenek, E., Crespo, O., Gimeno, M. C., Jones, P. G. \& Laguna, A. (1994). Chem. Ber. 127, 835-840.
Bruker (1997). SHELXLTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Crespo, O., Gimeno, M. C., Laguna, A. \& Jones, P. G. (1992). J. Chem. Soc. Dalton Trans. pp. 1601-1605.
Gielen, M., Bounhdid, A., Willem, R., Bregadze, V. I., Ermanson, L. V. \& Tiekink, E. R. T. (1995). J. Organomet. Chem. 501, 277-281.
Hart, F. A. \& Owen, D. W. (1985). Inorg. Chim. Acta, 103, L1-L2.
Hawthorne, M. F. (1993). Angew. Chem. Int. Ed. Engl. 32, 950-984.
Hsu, M. T. S., Chen, T. S. \& Riccitiello, S. R. (1991). J. Appl. Polym. Sci. 42, 851-861.
Kivekäs, R., Sillanpaa, R., Teixidor, F., Vinas, C., Nunez, R. \& Abad, M. M. (1995). Acta Cryst. C51, 1864-1868.

Longato, B. \& Bresadola, S. (1982). Inorg. Chem. 21, 168-173.
Pleasek, J. (1992). Chem. Rev. 92, 269-278.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography

